处理AI落地难题,星环科技可构建统一协作的企业级AI平台
发布时间:2021-10-30 10:41:38 所属栏目:站长百科 来源:互联网
导读:在国内政策引导、企业产业智能升级的原生需求和疫情等多重因素作用下,中国的人工智能产业化应用在过去的5年间呈现出无可比拟的增长速度。2020年的中国人工智能软件市场规模已经超过了230亿元人民币,即便在疫情等外部因素考验下,仍旧迎来了平稳的增长。 然
|
在国内政策引导、企业产业智能升级的原生需求和疫情等多重因素作用下,中国的人工智能产业化应用在过去的5年间呈现出无可比拟的增长速度。2020年的中国人工智能软件市场规模已经超过了230亿元人民币,即便在疫情等外部因素考验下,仍旧迎来了平稳的增长。
然而随着应用市场的下沉,市场上仍旧缺乏普惠的AI工具,即便在企业拥有相关开发、建模人才的情况下,AI科学家和业务人员之间仍旧存在技术鸿沟。他们习惯使用各自的平台和工具进行数据分析或建模工作,这些数据资产被分散在企业各个角落,造成了模型的重复构建和资源的孤岛林立。而这些人才无法在同一个AI平台上一起协作,发挥出他们各自的优势能力,这是AI落地目前面临最大的挑战。
企业AI落地,到底难在哪里
企业在涉及到人工智能业务时,其研发流程需经历从明确业务问题->数据采集及清洗->特征工程->模型训练及打包->模型评估及验证->模型部署及上线->A/B test,以及模型监控和迭代的工作流程。整个链条非常长,容易涉及到多个平台间的切换。在任何环节出现功能短板或缺失,都会影响模型的开发效率和开发质量,或导致模型无法及时在实际业务当中部署应用。
在AI建模全生命周期中,涉及到企业内各类角色的协作,如:行业/领域专家、数据科学家、数据工程师、开发者/DevOps专家等等。这些角色均有各自擅长的技能,可以为AI建模的某些流程贡献智慧,如行业/领域专家对业务有深入洞见,擅长通过数据构建业务模型;数据科学家擅长数据分析、特征加工、ML模型开发及测试;数据工程师擅长进行数据收集、数据治理和数据加工;开发者/DevOps专家擅长软件工具及基础设施的构建与维护,帮助数据科学家将ML模型转化为实际生产力。
这些角色由于专业背景和职能的不同,都习惯使用各自的平台或工具推进工作,在流程衔接方面会存在大量重复性数据、环境适配工作,造成AI模型开发的周期大大拉长,且无法进行数据、模型等资源的统一管理和资产沉淀。
(编辑:海豚站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |


